Дефиниција: Цилиндар е 3-димензионална фигура во форма на лименка за кока кола :)

Пример: Цилиндар (Кликни и влечи ги лизгачите и по потреба помести или намали го приказот.)

This browser does not have a Java Plug-in.
Get the latest Java Plug-in here.
Oсновни формули за цилиндар со радиус a и висина h:
  • Волумен на цилиндарот: V = h B и
  • Плоштина на цилиндарот: SA = 2 B + h L
каде што
  • L=2 r \pi е периметар (обем) на кружницата, а
  • B =r^2 \pi е плоштина на основата (кружницата).

Примери за периметар и плоштина на паралелограм

Провери ги следните примери преку погорниот интерактивен приказ.

Забележи дека не влијае должината на "страната" b врз плоштината, a висината h врз периметарот
r h Периметар на кружницата: L_\circ=2 r \pi Плоштина на кружницата: A_\circ = r^2 \pi Волумен на цилиндарот: V = h B Плоштина на цилиндарот: SA = 2 B + h L
3 \,cm 7 \,cm \begin{array}{} 2 \cdot 3 \,cm \cdot \pi = 6 \pi \,cm \end{array} \begin{array}{} (3 \,cm)^2 \cdot \pi = 9 \pi \,cm^2 \end{array} 7 \,cm \cdot 9 \pi \,cm^2 =63 \pi \,cm^3 2 \cdot 9 \pi \,cm^2 + 7 \,cm \cdot 6 \pi \,cm = 60 \pi \,cm^2
3 \,cm 7 \,cm \begin{array}{} 2 \cdot 3 \,cm \cdot \pi = 18,8 \,cm \end{array} \begin{array}{} (3 \,cm)^2 \cdot \pi = 28,2 \,cm^2 \end{array} 7 \,cm \cdot 28,2 \,cm^2 = 197,4 \,cm^3 2 \cdot 28,2 \,cm^2 + 7 \,cm \cdot 18,8 \,cm = 188,1 \,cm^2
7 \,cm 3 \,cm \begin{array}{} 2 \cdot 7 \,cm \cdot \pi = 14 \pi \,cm \end{array} \begin{array}{} (7 \,cm)^2 \cdot \pi = 49 \pi \,cm^2 \end{array} 3 \,cm \cdot 49 \pi \,cm^2 =147 \pi \,cm^3 2 \cdot 49 \pi \,cm^2 + 3 \,cm \cdot 14 \pi \,cm = 140 \pi \,cm^2
7 \,cm 3 \,cm \begin{array}{} 2 \cdot 7 \,cm \cdot \pi = 44,0 \,cm \end{array} \begin{array}{} (7 \,cm)^2 \cdot \pi = 153,9 \,cm^2 \end{array} 3 \,cm \cdot 153,9 \,cm^2 = 461,8 \,cm^3 2 \cdot 153,9 \,cm^2 + 3 \,cm \cdot 44,0 \,cm = 439,8 \,cm^2
4,8 \,cm 1,6 \,m \begin{array}{} 2 \cdot 4,8 \times 10^{-2} \,m \cdot \pi\\= 9,6 \pi \times 10^{-2} \,m \\ = 30,16 \times 10^{-2} \,m \end{array} \begin{array}{} (4,8 \times 10^{-2} \,m)^2 \cdot \pi\\= 2,30 \times 10^{-3} \cdot \pi \,m^2 \\ = 7,24 \times 10^{-3} \, m^2 \end{array} \begin{array}{} 1,6 \,m \cdot 7,24 \times 10^{-3} \, m^2 \\ =1,16 \times 10^{-2} \, m^3 \end{array} \begin{array}{}2 \cdot 7,24 \times 10^{-3} \, m^2 \\ \quad + 1,6 \,m \cdot 30,16 \times 10^{-2} \,m \\ = 49,7 \times 10^{-2} \,m^2 \end{array}

Интерактивност: Конструирај цилиндар

 

Поврзани теми:


 Нагоре македонски речник математика makedonski recnik matematika